ТАРИФ "VIP Канонир" - СКИДКА 50%!

Перед оплатой введите промо-код:

PIRAT.BIZ_50%
  • Объявление

    Гость, Перед публикацией материалов ознакомьтесь с правилами создания и оформления раздач.

[Udemy] Машинное обучение: регрессия и предсказание данных на Python (2020)

Pirat Admin

Активный
Регистрация
22.02.18
Сообщения
2,598
Реакции
38,438
Депозит
0
Сделки
0
Нарушения
0 / 0
Монетки
1039.5
    Голосов: 0
    0.0 5 0 0 https://tor.pirat.bz/threads/udemy-mashinnoe-obuchenie-regressija-i-predskazanie-dannyx-na-python-2020.42878/
  • #1
Автор: Udemy
Название: Машинное обучение: регрессия и предсказание данных на Python (2020)

1583823126557.png


Чему вы научитесь
  • Процесс ETL: загрузка, очистка, объединение данных
  • Построение и оценка качества модели линейной регрессии
  • EDA: исследовательский анализ данных
  • Обогащение данных для извлечение смысла
  • Оптимизация потребления памяти набором данных
  • Иерархия моделей линейной регрессии
  • Ансамбль моделей линейной регрессии
  • Экспорт и импорт данных в CSV и HDF5
  • Участие в соревнование Kaggle
Требования
  • Продвинутый Python
  • Основы математической статистики
Описание
Мы рассмотрим все практические аспекты применения линейной регрессии для предсказания числовых показателей энергопотребления ASHRAE в соревновании на Kaggle вплоть до формирования конечного результата.

В этом курсе:
  • Особенности процесса анализа данных (ETL): загрузка, очистка, объединение наборов данных с pandas.
  • Проведение исследовательского анализа данных для поиска зависимостей: EDA.
  • Использование sklearn для линейной регрессии.
  • Интерполяция и экстраполяция данных.
  • Расчет метрики качества RMSLE для моделей линейной регрессии.
  • Оптимизация линейной регрессии: выбор наилучших параметров и гиперпараметров.
  • Оптимизация потребления памяти при работе с большими данными.
  • Запасные модели линейной регрессии.
  • Ансамбли линейной регрессии для уточнения предсказания.
  • Экспорт и импорт данных, включая промежуточные.
  • Выгрузка результата для соревнования на Kaggle.
Для кого этот курс:
  • Аналитики Python, изучающие машинное обучение
  • Программисты больших данных
  • Исследователи больших данных

Подробнее:
Для просмотра ссылок пройдите регистрацию


Скачать:
Для просмотра ссылок пройдите регистрацию
 
Верх Низ